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ABSTRACT

Information Retrieval is an emerging research anethe field of Information Retrieval. Due to themense
amount of data in the WWW, it is very tough for theer to retrieve the relevant images. Traditidnzge Retrieval
approaches based on topic similarity alone is mfficient nowadays the content based image retri¢€8IR) are
becoming a source of exact and fast retrieval. ety of techniques have been developed to imptbegerformance of
CBIR. Data clustering is an unsupervised methocefdraction hidden pattern from huge data setsh\ditge data sets,
there is possibility of high dimensionality. Havitpth accuracy and efficiency for high dimensiodata sets with
enormous number of samples is a challenging alenthis paper the clustering techniques are diszlssd analysed.
Also, we propose a method HDK that uses more thenctustering technique to improve the performasfc€BIR.This
method makes use of hierachical and divide and wemkj- Means clustering technique with equivaleaog compatible
relation concepts to improve the performance ofkheans for using in high dimensional datasetsal$b introduced
the feature like color, texture and shape for aateuand effective retrieval system. This surveyegian introduction to

content-based image Retrieval and explores therdifit types of retrieval methods

KEYWORDS: CBIR, Image Feature Extraction, Image Analysisade Retrieval, Image Similarity Clustering

Techniques
INTRODUCTION

Content-based image retrieval (CBIR), also knowmjwey by image content (QBIC) and content-basedali
information retrieval (CBVIR) is the application ocdmputer vision techniques to the image retrigvablem, that is, the
problem of searching for digital images in largéatiases (see this surf&yor a recent scientific overview of the CBIR

field). Content-based image retrieval is opposecbttcept-based approaches .

"Content-based" means that the search analyzexdhtents of the image rather than themetadata asch
keywords, tags, or descriptions associated wittirttegge. The term "content” in this context migtferdo colors, shapes,
textures, or any other information that can bewderifrom the image itself. CBIR is desirable beeam®st web-based
image search engines rely purely on metadata asdptbduces a lot of garbage in the resAliso having humans
manually enter keywords for images in a large dedalran be inefficient, expensive and may not cagvery keyword
that describes the imagehus a system that can filter images based on tugitent would provide better indexing and

return more accurate results.

The term "content-based image retrieval" seemsate horiginated in 1992 when it was used by T. Kiato

describe experiments into automatic retrieval odiges from a database, based on the colors andsshegseng Since
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then, the term has been used to describe the grofastrieving desired images from a large coitecon the basis of
syntactical image features. The techniques, taots, algorithms that are used originate from fiddsh as statistics,

pattern recognition, signal processing, and cormpusgon.

There is a growing interest in CBIR because oflithéations inherent in metadata-based systemsyedlsas the
large range of possible uses for efficient imaddenal. Textual information about images can bsilgasearched using
existing technology, but this requires humans touadly describe each image in the database. Tlispgactical for very
large databases or for images that are generatechatically, e.g. those from surveillance camelais also possible to
miss images that use different synonyms in thescdptions. Systems based on categorizing imagesnmantic classes

like "cat" as a subclass of "animal" avoid thiskdemn but still face the same scaling issues.
CBIR TECHNIQUES

Many CBIR systems have been developed, but thdgrobf retrieving images on the basis of their ppantent

remains largely unsolved.
Query Techniques

Different implementations of CBIR make use of diffiet types of user queries. Query by example isieryg
technique that involves providing the CBIR systeithvan example image that it will then base itsreleaupon. The
underlying search algorithms may vary dependinghenapplication, but result images should all sitam@mon elements

with the provided example.
Options for providing example images to the sysimctude:
« A preexisting image may be supplied by the usehosen from a random set.

» The user draws a rough approximation of the imdgs fare looking for, for example with blobs of colar

general shapes.
This query technique removes the difficulties e arise when trying to describe images with words
Semantic Retrieval

The ideal CBIR system from a user perspective winudlve what is referred to agmantiaetrieval, where the
user makes a request like "find pictures of Abratiémeoln”. This type of open-ended task is veryfidiflt for computers
to perform - pictures of chihuahuas and Great Déoas very different, and Lincoln may not alwaysfaeing the camera
or in the same pose. Current CBIR systems therafenerally make use of lower-level features likeuee, color, and
shape, although some systems take advantage oteamnon higher-level features like faces . Not g¥@BIR system is
generic. Some systems are designed for a speoifiaih, e.g. shape matching can be used for finplamts inside a CAD-
CAM database.

Other Query Methods

Other query methods include browsing for exampleges, navigating customized/hierarchical categories
querying by image region (rather than the entirage), querying by multiple example images, queryangisual sketch,

querying by direct specification of image featuaas] multimodal queries (e.g. combining touch, gpi&tc.)

CBIR systems can also make useedévance feedbackvhere the user progressively refines the seashlts by

marking images in the results as "relevant”, "mb¢vant”, or "neutral”" to the search query, thgreeting the search with
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the new information.
Content Comparison Using Image Distance Measures

The most common method for comparing two imagesontent-based image retrieval (typically an example
image and an image from the database) is usingnage distance measure. An image distance measomgaces the
similarity of two images in various dimensions swh color, texture, shape, and others. For examplestance of 0
signifies an exact match with the query, with respge the dimensions that were considered. As oag mtuitively
gather, a value greater than 0 indicates variogsegs of similarities between the images. Seamlitsethen can be sorted

based on their distance to the queried infdgelong list of distance measures can be found in.
Color

Computing distance measures based on color sitgilexiachieved by computing a color histogram facke
image that identifies the proportion of pixels wittan image holding specific values (that humangress as colors).
Current research is attempting to segment colopgtdn by region and by spatial relationship amaegeral color
regions. Examining images based on the colors ¢beyain is one of the most widely used techniqueesabse it does not
depend on image size or orientation. Color searaliessually involve comparing color histogrartough this is not the

only technique in practice.
Texture

Texture measures look for visual patterns in images how they are spatially defined. Textures apgasented
by texelswhich are then placed into a number of sets, ddipgron how many textures are detected in the iméigese

sets not only define the texture, but also whetthénimage the texture is located.

Texture is a difficult concept to represent. Thenitfication of specific textures in an image isigwved primarily
by modeling texture as a two-dimensional gray lexlation. The relative brightness of pairs ofgdxis computed such
that degree of contrast, regularity, coarsenessdiedtionality may be estimated (Tamura, Mori &nvawaki, 1978).
However, the problem is in identifying patterns auf-pixel variation and associating them with panac classes of

textures such as silky, or rough.
Shape

Shape does not refer to the shape of agerbat to the shape of a particular region thékisg sought out. Shapes

will often be determined first applying segmentatior edge detectioto an image. Other methods like [Tushabe and

Wilkinson 2008] use shape filters to identify givelmapes of an image. In some case accurate shegmtiate will require

human intervention because methods like segmentat®very difficult to completely automate.
THE RETRIEVAL BASED ON CLUSTERING TECHNIQUES

Clustering techniques can be classified into supedv(including semi-supervised) and unsupervisgetroes.
The former consists of hierarchical approachesdbatand human interaction to generate splittingpiga for clustering.
In unsupervised classification, called clusteringegploratory data analysis, no labeled data aeslable The goal of
clustering is to separate a finite unlabeled dataisto a finite and discrete set of “natural,” deh data structures,
rather than provide an accurate characterizationuobbserved samples generated from the same plibpabi

distribution This paper critically reviews and suammes different clustering techniques.
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Log —Based Clustering

Images can be clustered based on the retrievadmylstgs maintained by an information retrieval gsx The
session keys are created and accessed for retrieledugh this the session clusters are createch Bassion cluster
generates log —based document and similarity ofgémeouple is retrieved. Log —based vector is cdedte each
session vector based on the log-based document, thewsession cluster is replaced with this vecitve unaccessed

documents creates its own vector.

A hybrid matrix is generated with at least one wudlial document vector and one log-based clustered
vector. At last the hybrid matrix is clustered. §hechnique is difficult to perform in the casenuiltidimensional images.
To overcome this hierarchical clustering is adopted

Hierarchical Clustering

Hierarchical clustering (HC) algorithms organizetadanto a hierarchical structure according to thexjmity
matrix. The results of HC are usually depicted bligary tree or dendrogram as shown in Figure lev#erB, C, D,
E, F, G are objects or clusters. It representsnésted grouping of patterns and similarity levelswaich groupings
change. The root node of the dendrogram repredéetsvhole data set and each leaf node is regarded data
object. The intermediate nodes, thus, describesktent that the objects are proximal to each othed the height of
the dendrogram usually expresses the distance beteach pair of objects or clusters, or an objedtacluster. The
ultimate clustering results can be obtained byimgtthe dendrogram at different levels. This repn¢gtion provides very
informative descriptions and visualization for thetential data clustering structures, especiallenvineal hierarchical
relations exist in the data, like the data from letionary research on different species of orgasizhiC algorithms are
mainly classified as agglomerative methods andstigi methods. Agglomerative clustering starts weinsters and each
of them includes exactly one object. A series ofgaeoperations are then followed out that finaétgd all objects to
the same group. Divisive clustering proceeds igposite way. In the beginning, the entire datebséings to a cluster
and a procedure successively divides it until dlisiers are singleton clusters. For a cluster wiifects, there are
2¥1.1 possible two-subset divisions, which is very engive in computation. Therefore, divisive clustgriis not
commonly used in practice. In recent years, with thquirement for handling large-scale data setslata mining

and other fields, many new HC techniques have appeand greatly improved the clustering performance
Retrieval Dictionary Based Clustering

A rough classification retrieval system is formerhis is formed by calculating the distance betwaen
learned patterns and these learned patterns assifidd into different clusters followed by a retral stage. The main
drawback addressed in this system is the deteribmaf the distance. To overcome this problem aaedl system is
developed by retrieval dictionary based clusterifgis method has a retrieval dictionary generatioit that classifies
learned patterns into plural clusters and createstréeval dictionary using the clusters. Here, theage is retrieved
based on the distance between two spheres witlerelift radii. Each radius is a similarity measuréwvben central

cluster and an input image. An image which is gimib the query image will be retrieved using eatail dictionary.
NCut Algorithm

Ncut method attempts to organize nodes into gragghat the within the group similarity is high,déor
between the groups similarity is low. This methosl émpirically shown to be relatively robust in ireag

segmentation. This method can be recursively agpplieget more than two clusters. In this methodhetime the
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subgraph with maximum number of nodes is partitibflandom selection for tie breaking). The procEssinates
when the bound on the number of clusters is reachetie Ncut value exceeds some threshold T. Thersare Ncut
partition is essentially a hierarchical divisivaeigtering process that produces a tree. Nonethelessiree organization
here may misleading a user because there is namear of any correspondence between the tree andethantic
structure of images. Furthermore, organizing imalysters into a tree structure will significantlgraplicate the user

interface.
K Means Clustering

This nonhierairchal method initially takes the neminf components of the population equal to thelfin
required number of clusters. In this step itself fmal required number of clusters is chosen ghelh the points are
mutually farthest apart. Next, it examines each poment in the population and assigns it to onehef tlusters
depending on the minimum distance. The centroigtipn is recalculated everytime a component geddo the cluster
and this continues until all the components areuged into the final required number of clusters.TKe means
algorithm is very simple and can be easily impletedrin solving many practical problems. It can weskey well for
compact and hyperspherical clusters. The time cexityl of K-means is O (NKd). Since K and d are Uiguauch less
than N,K-means can be used to cluster large ddta Barallel techniques for K-means are developatl tan largely
accelerate the algorithm. Incremental clusteringmégues for example (Bradley et al., 1998) dorequire the storage of
the entire data set, and can handle it in a oneqpaat-a-time way. If the pattern displays enougbseness to a
cluster according to some predefined criteriasiagsigned to the cluster. Otherwise, a new clistaeated to represent
the object.

Graph Theory Based Clustering

The concepts and properties of graph theory makerit convenient to describe clustering problemsrimans
of graphs. Nodes of a weighted graph correspondata points in the pattern space and edges refiecproximities
between each pair of data points. A graph-basestering method is particularly well suited for degl with data that is
used in the construction of minimum spanning tre8TMIt can be used for detecting clusters of amg sind shape
without specifying the actual number of clusterelMnown algorithms in clustering are Minimum Spamg Tree based
clustering, and clustering editing method, HCS athm, etc. Current research is focused on clusterising divide
and conquers approach. Usually this clustering agitlogy is used to detect irregular clustering loauies in clustering
results. Zhan proposes to construct an MST andel#ie inconsistent edges, i.e. the edges weidhesare significantly
larger than average weight of the nearby edge$dntree. The inconsistency measure is applied ¢b edge to detect
and remove the inconsistence edges, which resslta aet of disjoint subtrees, each subtree willesmt a separate

cluster
Divide and Conquer K-Means

When the size of a data set is too large, it issipbs to divide the data into different subsets tmdise the
selected cluster algorithm separately to theseetsb3his approach is known as divide and conquene divide and
conquer algorithm first divides the entire data is#d a subset based on some criteria. The selestibdet is again
clustered with a clustering algorithm K-Means. Tddvantage is to accelerate search and to reducelexity which
depends on number of samples. Methods basesulbspace clusteringnay help to ease the problem of clustering
high-dimensional data, but they are not adapteabtining a large number of clusters .A possibleitsm to this issue,

is to cluster hierarchically (obtain a small numleéiclusters and then cluster again each of thetels obtained). The
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proposed enhanced clustering method HDK which tisescombination of unsupervised clustering methisdsne of

the method that can largely accelerate the CBIResys
CONCLUSIONS

The purpose of this survey is to provide an ovevwi the functionality of content based image mtall
systems. Combining advantages of HC and divide @mtjuer K-Means strategy can help us in both efficy and
quality. HC algorithm can construct structured tdus. Although HC yields high quality clusters st complexity is
guadratic and is not suitable for huge datasetshagid dimension data. In contrast K-Means is linedéh size of data
set and dimension and can be used for big datdsstyields low quality. Divide and conquer K-Meaten be used for
high dimensional data set . In this paper we pitesenethod HDK to use both advantages of HC anddBiand conquer
K-Means by introducing equivalency and compatil#ation concepts. Using two steps clustering irhhigmensional
data sets with considering no of clusters basedobor feature helps us to improve accuracy andieficy of original K-
Means clustering. For this purpose we should censmfthogonal space. HDK algorithm has been usddnsively

in various areas to improve the performance ofsystem and to achieve better results in differpptieations.
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